
Migen manual
Release 0.5.dev0

Sebastien Bourdeauducq

Oct 08, 2017

Contents

1 Introduction 1
1.1 Background . 1
1.2 Installing Migen . 2

1.2.1 Alternative install methods . 3
1.3 Feedback . 3

2 The FHDL domain-specific language 5
2.1 Expressions . 5

2.1.1 Constants . 5
2.1.2 Signal . 6
2.1.3 Operators . 6
2.1.4 Slices . 7
2.1.5 Concatenations . 7
2.1.6 Replications . 7

2.2 Statements . 7
2.2.1 Assignment . 7
2.2.2 If . 7
2.2.3 Case . 8
2.2.4 Arrays . 8

2.3 Specials . 8
2.3.1 Tri-state I/O . 8
2.3.2 Instances . 9
2.3.3 Memories . 9

2.4 Modules . 10
2.4.1 Combinatorial statements . 10
2.4.2 Synchronous statements . 11
2.4.3 Submodules and specials . 11
2.4.4 Clock domains . 11
2.4.5 Summary of special attributes . 12
2.4.6 Clock domain management . 12
2.4.7 Finalization mechanism . 12

2.5 Conversion for synthesis . 13

3 Simulating a Migen design 15
3.1 Examples . 15
3.2 Pitfalls . 16

i

4 Synthesizing a Migen design 17

5 API reference 19
5.1 fhdl.structure module . 19
5.2 fhdl.bitcontainer module . 24
5.3 genlib.fifo module . 24
5.4 genlib.coding module . 24
5.5 genlib.sort module . 25
5.6 genlib.fsm module . 25

Bibliography 27

ii

CHAPTER 1

Introduction

Migen is a Python-based tool that aims at automating further the VLSI design process.

Migen makes it possible to apply modern software concepts such as object-oriented programming and metaprogram-
ming to design hardware. This results in more elegant and easily maintained designs and reduces the incidence of
human errors.

Background

Even though the Milkymist system-on-chip [mm] had many successes, it suffers from several limitations stemming
from its implementation in manually written Verilog HDL:

1. The “event-driven” paradigm of today’s dominant hardware descriptions languages (Verilog and VHDL, collec-
tively referred to as “V*HDL” in the rest of this document) is often too general. Today’s FPGA architectures
are optimized for the implementation of fully synchronous circuits. This means that the bulk of the code for an
efficient FPGA design falls into three categories:

(a) Combinatorial statements

(b) Synchronous statements

(c) Initialization of registers at reset

V*HDL do not follow this organization. This means that a lot of repetitive manual coding is needed, which
brings sources of human errors, petty issues, and confusion for beginners:

(a) wire vs. reg in Verilog

(b) forgetting to initialize a register at reset

(c) deciding whether a combinatorial statement must go into a process/always block or not

(d) simulation mismatches with combinatorial processes/always blocks

(e) and more...

1

Migen manual, Release 0.5.dev0

A little-known fact about FPGAs is that many of them have the ability to initialize their registers from the
bitstream contents. This can be done in a portable and standard way using an “initial” block in Verilog, and by
affecting a value at the signal declaration in VHDL. This renders an explicit reset signal unnecessary in practice
in some cases, which opens the way for further design optimization. However, this form of initialization is
entirely not synthesizable for ASIC targets, and it is not easy to switch between the two forms of reset using
V*HDL.

2. V*HDL support for composite types is very limited. Signals having a record type in VHDL are unidirectional,
which makes them clumsy to use e.g. in bus interfaces. There is no record type support in Verilog, which means
that a lot of copy-and-paste has to be done when forwarding grouped signals.

3. V*HDL support for procedurally generated logic is extremely limited. The most advanced forms of proce-
dural generation of synthesizable logic that V*HDL offers are CPP-style directives in Verilog, combinatorial
functions, and generate statements. Nothing really fancy, and it shows. To give a few examples:

(a) Building highly flexible bus interconnect is not possible. Even arbitrating any given number of bus masters
for commonplace protocols such as Wishbone is difficult with the tools that V*HDL puts at our disposal.

(b) Building a memory infrastructure (including bus interconnect, bridges and caches) that can automatically
adapt itself at compile-time to any word size of the SDRAM is clumsy and tedious.

(c) Building register banks for control, status and interrupt management of cores can also largely benefit from
automation.

(d) Many hardware acceleration problems can fit into the dataflow programming model. Manual dataflow im-
plementation in V*HDL has, again, a lot of redundancy and potential for human errors. See the Milkymist
texture mapping unit [mthesis] [mxcell] for an example of this. The amount of detail to deal with manually
also makes the design space exploration difficult, and therefore hinders the design of efficient architectures.

(e) Pre-computation of values, such as filter coefficients for DSP or even simply trigonometric tables, must
often be done using external tools whose results are copy-and-pasted (in the best case, automatically) into
the V*HDL source.

Enter Migen, a Python toolbox for building complex digital hardware. We could have designed a brand new program-
ming language, but that would have been reinventing the wheel instead of being able to benefit from Python’s rich
features and immense library. The price to pay is a slightly cluttered syntax at times when writing descriptions in
FHDL, but we believe this is totally acceptable, particularly when compared to VHDL ;-)

Migen is made up of several related components:

1. the base language, FHDL

2. a library of small generic cores

3. a simulator

4. a build system

Installing Migen

Either run the setup.py installation script or simply set PYTHONPATH to the root of the source directory.

If you wish to contribute patches, the suggest way to install is;

1. Clone from the git repository at http://github.com/m-labs/migen

2. Install using python3 ./setup.py develop --user

3. Edit the code in your git checkout.

2 Chapter 1. Introduction

http://github.com/m-labs/migen

Migen manual, Release 0.5.dev0

Alternative install methods

• Migen is available for the Anaconda Python distribution. The package can be found at at https://anaconda.org/
m-labs/migen

• Migen can be referenced in a requirements.txt file (used for pip install -r requirements.txt)
via -e git+http://github.com/m-labs/migen.git#egg=migen. See the pip documentation for
more information.

Feedback

Feedback concerning Migen or this manual should be sent to the M-Labs developers’ mailing list devel on lists.m-
labs.hk.

1.3. Feedback 3

https://anaconda.org/m-labs/migen
https://anaconda.org/m-labs/migen

Migen manual, Release 0.5.dev0

4 Chapter 1. Introduction

CHAPTER 2

The FHDL domain-specific language

The Fragmented Hardware Description Language (FHDL) is the basis of Migen. It consists of a formal system
to describe signals, and combinatorial and synchronous statements operating on them. The formal system itself is
low level and close to the synthesizable subset of Verilog, and we then rely on Python algorithms to build complex
structures by combining FHDL elements. The FHDL module also contains a back-end to produce synthesizable
Verilog, and some structure analysis and manipulation functionality.

FHDL differs from MyHDL [myhdl] in fundamental ways. MyHDL follows the event-driven paradigm of traditional
HDLs (see Background) while FHDL separates the code into combinatorial statements, synchronous statements, and
reset values. In MyHDL, the logic is described directly in the Python AST. The converter to Verilog or VHDL then
examines the Python AST and recognizes a subset of Python that it translates into V*HDL statements. This seriously
impedes the capability of MyHDL to generate logic procedurally. With FHDL, you manipulate a custom AST from
Python, and you can more easily design algorithms that operate on it.

FHDL is made of several elements, which are briefly explained below. They all can be imported directly from the
migen module.

Expressions

Constants

The Constant object represents a constant, HDL-literal integer. It behaves like specifying integers and booleans but
also supports slicing and can have a bit width or signedness different from what is implied by the value it represents.

True and False are interpreted as 1 and 0, respectively.

Negative integers are explicitly supported. As with MyHDL [countin], arithmetic operations return the natural results.

To lighten the syntax, assignments and operators automatically wrap Python integers and booleans into Constant.
Additionally, Constant is aliased to C. The following are valid Migen statements: a.eq(0), a.eq(a + 1),
a.eq(C(42)[0:1]).

5

Migen manual, Release 0.5.dev0

Signal

The signal object represents a value that is expected to change in the circuit. It does exactly what Verilog’s “wire” and
“reg” and VHDL’s “signal” do.

The main point of the signal object is that it is identified by its Python ID (as returned by the id() function), and
nothing else. It is the responsibility of the V*HDL back-end to establish an injective mapping between Python IDs
and the V*HDL namespace. It should perform name mangling to ensure this. The consequence of this is that signal
objects can safely become members of arbitrary Python classes, or be passed as parameters to functions or methods
that generate logic involving them.

The properties of a signal object are:

• An integer or a (integer, boolean) pair that defines the number of bits and whether the bit of higher index of the
signal is a sign bit (i.e. the signal is signed). The defaults are one bit and unsigned. Alternatively, the min and
max parameters can be specified to define the range of the signal and determine its bit width and signedness. As
with Python ranges, min is inclusive and defaults to 0, max is exclusive and defaults to 2.

• A name, used as a hint for the V*HDL back-end name mangler.

• The signal’s reset value. It must be an integer, and defaults to 0. When the signal’s value is modified with a
synchronous statement, the reset value is the initialization value of the associated register. When the signal is
assigned to in a conditional combinatorial statement (If or Case), the reset value is the value that the signal
has when no condition that causes the signal to be driven is verified. This enforces the absence of latches in
designs. If the signal is permanently driven using a combinatorial statement, the reset value has no effect.

The sole purpose of the name property is to make the generated V*HDL code easier to understand and debug. From a
purely functional point of view, it is perfectly OK to have several signals with the same name property. The back-end
will generate a unique name for each object. If no name property is specified, Migen will analyze the code that created
the signal object, and try to extract the variable or member name from there. For example, the following statements
will create one or several signals named “bar”:

bar = Signal()
self.bar = Signal()
self.baz.bar = Signal()
bar = [Signal() for x in range(42)]

In case of conflicts, Migen tries first to resolve the situation by prefixing the identifiers with names from the class and
module hierarchy that created them. If the conflict persists (which can be the case if two signal objects are created
with the same name in the same context), it will ultimately add number suffixes.

Operators

Operators are represented by the _Operator object, which generally should not be used directly. Instead, most
FHDL objects overload the usual Python logic and arithmetic operators, which allows a much lighter syntax to be
used. For example, the expression:

a * b + c

is equivalent to:

_Operator("+", [_Operator("*", [a, b]), c])

6 Chapter 2. The FHDL domain-specific language

Migen manual, Release 0.5.dev0

Slices

Likewise, slices are represented by the _Slice object, which often should not be used in favor of the Python slice
operation [x:y]. Implicit indices using the forms [x], [x:] and [:y] are supported. Beware! Slices work like Python
slices, not like VHDL or Verilog slices. The first bound is the index of the LSB and is inclusive. The second bound is
the index of MSB and is exclusive. In V*HDL, bounds are MSB:LSB and both are inclusive.

Concatenations

Concatenations are done using the Cat object. To make the syntax lighter, its constructor takes a variable number
of arguments, which are the signals to be concatenated together (you can use the Python “*” operator to pass a list
instead). To be consistent with slices, the first signal is connected to the bits with the lowest indices in the result. This
is the opposite of the way the “{}” construct works in Verilog.

Replications

The Replicate object represents the equivalent of {count{expression}} in Verilog. For example, the expression:

Replicate(0, 4)

is equivalent to:

Cat(0, 0, 0, 0)

Statements

Assignment

Assignments are represented with the _Assign object. Since using it directly would result in a cluttered syntax, the
preferred technique for assignments is to use the eq() method provided by objects that can have a value assigned
to them. They are signals, and their combinations with the slice and concatenation operators. As an example, the
statement:

a[0].eq(b)

is equivalent to:

_Assign(_Slice(a, 0, 1), b)

If

The If object takes a first parameter which must be an expression (combination of the Constant, Signal,
_Operator, _Slice, etc. objects) representing the condition, then a variable number of parameters represent-
ing the statements (_Assign, If, Case, etc. objects) to be executed when the condition is verified.

The If object defines a Else() method, which when called defines the statements to be executed when the condition
is not true. Those statements are passed as parameters to the variadic method.

For convenience, there is also a Elif() method.

Example:

2.2. Statements 7

Migen manual, Release 0.5.dev0

If(tx_count16 == 0,
tx_bitcount.eq(tx_bitcount + 1),
If(tx_bitcount == 8,

self.tx.eq(1)
).Elif(tx_bitcount == 9,

self.tx.eq(1),
tx_busy.eq(0)

).Else(
self.tx.eq(tx_reg[0]),
tx_reg.eq(Cat(tx_reg[1:], 0))

)
)

Case

The Case object constructor takes as first parameter the expression to be tested, and a dictionary whose keys are the
values to be matched, and values the statements to be executed in the case of a match. The special value "default"
can be used as match value, which means the statements should be executed whenever there is no other match.

Arrays

The Array object represents lists of other objects that can be indexed by FHDL expressions. It is explicitly possible
to:

• nest Array objects to create multidimensional tables.

• list any Python object in a Array as long as every expression appearing in a module ultimately evaluates to a
Signal for all possible values of the indices. This allows the creation of lists of structured data.

• use expressions involving Array objects in both directions (assignment and reading).

For example, this creates a 4x4 matrix of 1-bit signals:

my_2d_array = Array(Array(Signal() for a in range(4)) for b in range(4))

You can then read the matrix with (x and y being 2-bit signals):

out.eq(my_2d_array[x][y])

and write it with:

my_2d_array[x][y].eq(inp)

Since they have no direct equivalent in Verilog, Array objects are lowered into multiplexers and conditional state-
ments before the actual conversion takes place. Such lowering happens automatically without any user intervention.

Any out-of-bounds access performed on an Array object will refer to the last element.

Specials

Tri-state I/O

A triplet (O, OE, I) of one-way signals defining a tri-state I/O port is represented by the TSTriple object. Such
objects are only containers for signals that are intended to be later connected to a tri-state I/O buffer, and cannot be

8 Chapter 2. The FHDL domain-specific language

Migen manual, Release 0.5.dev0

used as module specials. Such objects, however, should be kept in the design as long as possible as they allow the
individual one-way signals to be manipulated in a non-ambiguous way.

The object that can be used in as a module special is Tristate, and it behaves exactly like an instance of a tri-state
I/O buffer that would be defined as follows:

Instance("Tristate",
io_target=target,
i_o=o,
i_oe=oe,
o_i=i

)

Signals target, o and i can have any width, while oe is 1-bit wide. The target signal should go to a port and not
be used elsewhere in the design. Like modern FPGA architectures, Migen does not support internal tri-states.

A Tristate object can be created from a TSTriple object by calling the get_tristate method.

By default, Migen emits technology-independent behavioral code for a tri-state buffer. If a specific code is needed, the
tristate handler can be overriden using the appropriate parameter of the V*HDL conversion function.

Instances

Instance objects represent the parametrized instantiation of a V*HDL module, and the connection of its ports to FHDL
signals. They are useful in a number of cases:

• Reusing legacy or third-party V*HDL code.

• Using special FPGA features (DCM, ICAP, ...).

• Implementing logic that cannot be expressed with FHDL (e.g. latches).

• Breaking down a Migen system into multiple sub-systems.

The instance object constructor takes the type (i.e. name of the instantiated module) of the instance, then multiple
parameters describing how to connect and parametrize the instance.

These parameters can be:

• Instance.Input, Instance.Output or Instance.InOut to describe signal connections with the
instance. The parameters are the name of the port at the instance, and the FHDL expression it should be
connected to.

• Instance.Parameter sets a parameter (with a name and value) of the instance.

• Instance.ClockPort and Instance.ResetPort are used to connect clock and reset signals to the
instance. The only mandatory parameter is the name of the port at the instance. Optionally, a clock domain
name can be specified, and the invert option can be used to interface to those modules that require a 180-
degree clock or a active-low reset.

Memories

Memories (on-chip SRAM) are supported using a mechanism similar to instances.

A memory object has the following parameters:

• The width, which is the number of bits in each word.

• The depth, which represents the number of words in the memory.

• An optional list of integers used to initialize the memory.

2.3. Specials 9

Migen manual, Release 0.5.dev0

To access the memory in hardware, ports can be obtained by calling the get_port method. A port always has an
address signal a and a data read signal dat_r. Other signals may be available depending on the port’s configuration.

Options to get_port are:

• write_capable (default: False): if the port can be used to write to the memory. This creates an additional
we signal.

• async_read (default: False): whether reads are asychronous (combinatorial) or synchronous (registered).

• has_re (default: False): adds a read clock-enable signal re (ignored for asychronous ports).

• we_granularity (default: 0): if non-zero, writes of less than a memory word can occur. The width of the
we signal is increased to act as a selection signal for the sub-words.

• mode (default: WRITE_FIRST, ignored for aynchronous ports). It can be:

– READ_FIRST: during a write, the previous value is read.

– WRITE_FIRST: the written value is returned.

– NO_CHANGE: the data read signal keeps its previous value on a write.

• clock_domain (default: "sys"): the clock domain used for reading and writing from this port.

Migen generates behavioural V*HDL code that should be compatible with all simulators and, if the number of ports is
<= 2, most FPGA synthesizers. If a specific code is needed, the memory handler can be overriden using the appropriate
parameter of the V*HDL conversion function.

Modules

Modules play the same role as Verilog modules and VHDL entities. Similarly, they are organized in a tree structure. A
FHDL module is a Python object that derives from the Module class. This class defines special attributes to be used
by derived classes to describe their logic. They are explained below.

Combinatorial statements

A combinatorial statement is a statement that is executed whenever one of its inputs changes.

Combinatorial statements are added to a module by using the comb special attribute. Like most module special
attributes, it must be accessed using the += incrementation operator, and either a single statement, a tuple of statements
or a list of statements can appear on the right hand side.

For example, the module below implements a OR gate:

class ORGate(Module):
def __init__(self):
self.a = Signal()
self.b = Signal()
self.x = Signal()

###

self.comb += self.x.eq(self.a | self.b)

To improve code readability, it is recommended to place the interface of the module at the beginning of the __init__
function, and separate it from the implementation using three hash signs.

10 Chapter 2. The FHDL domain-specific language

Migen manual, Release 0.5.dev0

Synchronous statements

A synchronous statements is a statement that is executed at each edge of some clock signal.

They are added to a module by using the sync special attribute, which has the same properties as the comb attribute.

The sync special attribute also has sub-attributes that correspond to abstract clock domains. For example, to add
a statement to the clock domain named foo, one would write self.sync.foo += statement. The default
clock domain is sys and writing self.sync += statement is equivalent to writing self.sync.sys +=
statement.

Submodules and specials

Submodules and specials can be added by using the submodules and specials attributes respectively. This can
be done in two ways:

1. anonymously, by using the += operator on the special attribute directly, e.g. self.submodules +=
some_other_module. Like with the comb and sync attributes, a single module/special or a tuple or list
can be specified.

2. by naming the submodule/special using a subattribute of the submodules or specials attribute, e.g. self.
submodules.foo = module_foo. The submodule/special is then accessible as an attribute of the object,
e.g. self.foo (and not self.submodules.foo). Only one submodule/special can be added at a time
using this form.

Clock domains

Specifying the implementation of a clock domain is done using the ClockDomain object. It contains the name of
the clock domain, a clock signal that can be driven like any other signal in the design (for example, using a PLL
instance), and optionally a reset signal. Clock domains without a reset signal are reset using e.g. initial statements
in Verilog, which in many FPGA families initalize the registers during configuration.

The name can be omitted if it can be extracted from the variable name. When using this automatic naming feature,
prefixes _, cd_ and _cd_ are removed.

Clock domains are then added to a module using the clock_domains special attribute, which behaves exactly like
submodules and specials.

2.4. Modules 11

Migen manual, Release 0.5.dev0

Summary of special attributes

Syntax Action
self.comb += stmt Add combinatorial statement to current module.
self.comb += stmtA, stmtB
self.comb += [stmtA, stmtB]

Add combinatorial statements A and B to current mod-
ule.

self.sync += stmt Add synchronous statement to current module, in de-
fault clock domain sys.

self.sync.foo += stmt Add synchronous statement to current module, in clock
domain foo.

self.sync.foo += stmtA, stmtB
self.sync.foo += [stmtA, stmtB]

Add synchronous statements A and B to current module,
in clock domain foo.

self.submodules += mod Add anonymous submodule to current module.
self.submodules += modA, modB
self.submodules += [modA, modB]

Add anonymous submodules A and B to current mod-
ule.

self.submodules.bar = mod Add submodule named bar to current module. The sub-
module can then be accessed using self.bar.

self.specials += spe Add anonymous special to current module.
self.specials += speA, speB
self.specials += [speA, speB]

Add anonymous specials A and B to current module.

self.specials.bar = spe Add special named bar to current module. The special
can then be accessed using self.bar.

self.clock_domains += cd Add clock domain to current module.
self.clock_domains += cdA, cdB
self.clock_domains += [cdA, cdB]

Add clock domains A and B to current module.

self.clock_domains.pix = ClockDomain()
self.clock_domains._pix = ClockDomain()
self.clock_domains.cd_pix = ClockDomain()
self.clock_domains._cd_pix = ClockDomain()

Create and add clock domain pix to current module. The
clock domain name is pix in all cases. It can be accessed
using self.pix, self._pix, self.cd_pix and self._cd_pix,
respectively.

Clock domain management

When a module has named submodules that define one or several clock domains with the same name, those clock
domain names are prefixed with the name of each submodule plus an underscore.

An example use case of this feature is a system with two independent video outputs. Each video output module is made
of a clock generator module that defines a clock domain pix and drives the clock signal, plus a driver module that
has synchronous statements and other elements in clock domain pix. The designer of the video output module can
simply use the clock domain name pix in that module. In the top-level system module, the video output submodules
are named video0 and video1. Migen then automatically renames the pix clock domain of each module to
video0_pix and video1_pix. Note that happens only because the clock domain is defined (using ClockDomain
objects), not simply referenced (using e.g. synchronous statements) in the video output modules.

Clock domain name overlap is an error condition when any of the submodules that defines the clock domains is
anonymous.

Finalization mechanism

Sometimes, it is desirable that some of a module logic be created only after the user has finished manipulating that
module. For example, the FSM module supports that states be defined dynamically, and the width of the state signal
can be known only after all states have been added. One solution is to declare the final number of states in the FSM
constructor, but this is not user-friendly. A better solution is to automatically create the state signal just before the
FSM module is converted to V*HDL. Migen supports this using the so-called finalization mechanism.

12 Chapter 2. The FHDL domain-specific language

Migen manual, Release 0.5.dev0

Modules can overload a do_finalize method that can create logic and is called using the algorithm below:

1. Finalization of the current module begins.

2. If the module has already been finalized (e.g. manually), the procedure stops here.

3. Submodules of the current module are recursively finalized.

4. do_finalize is called for the current module.

5. Any new submodules created by the current module’s do_finalize are recursively finalized.

Finalization is automatically invoked at V*HDL conversion and at simulation. It can be manually invoked for any
module by calling its finalize method.

The clock domain management mechanism explained above happens during finalization.

Conversion for synthesis

Any FHDL module can be converted into synthesizable Verilog HDL. This is accomplished by using the convert
function in the migen.fhdl.verilog module:

define FHDL module MyDesign here

if __name__ == “__main__”: from migen.fhdl.verilog import convert con-
vert(MyDesign()).write(“my_design.v”)

The migen.build component provides scripts to interface third-party FPGA tools (from Xilinx, Altera and Lattice)
to Migen, and a database of boards for the easy deployment of designs.

2.5. Conversion for synthesis 13

Migen manual, Release 0.5.dev0

14 Chapter 2. The FHDL domain-specific language

CHAPTER 3

Simulating a Migen design

Migen allows you to easily simulate your FHDL design and interface it with arbitrary Python code. The simulator is
written in pure Python and interprets the FHDL structure directly without using an external Verilog simulator.

Migen lets you write testbenches using Python’s generator functions. Such testbenches execute concurrently with the
FHDL simulator, and communicate with it using the yield statement. There are four basic patterns:

1. Reads: the state of the signal at the current time can be queried using (yield signal);

2. Writes: the state of the signal after the next clock cycle can be set using (yield signal.eq(value));

3. Clocking: simulation can be advanced by one clock cycle using yield;

4. Composition: control can be transferred to another testbench function using yield from run_other().

A testbench can be run using the run_simulation function from migen.sim; run_simulation(dut,
bench) runs the generator function bench against the logic defined in an FHDL module dut.

Passing the vcd_name="file.vcd" argument to run_simulation will cause it to write a VCD dump of the
signals inside dut to file.vcd.

Examples

For example, consider this module:

class ORGate(Module):
def __init__(self):
self.a = Signal()
self.b = Signal()
self.x = Signal()

###

self.comb += self.x.eq(self.a | self.b)

It could be simulated together with the following testbench:

15

Migen manual, Release 0.5.dev0

dut = ORGate()

def testbench():
yield dut.a.eq(0)
yield dut.b.eq(0)
yield
assert (yield dut.x) == 0

yield dut.a.eq(0)
yield dut.b.eq(1)
yield
assert (yield dut.x) == 1

run_simulation(dut, testbench())

This is, of course, quite verbose, and individual steps can be factored into a separate function:

dut = ORGate()

def check_case(a, b, x):
yield dut.a.eq(a)
yield dut.b.eq(b)
yield
assert (yield dut.x) == x

def testbench():
yield from check_case(0, 0, 0)
yield from check_case(0, 1, 1)
yield from check_case(1, 0, 1)
yield from check_case(1, 1, 1)

run_simulation(dut, testbench())

Pitfalls

There are, unfortunately, some basic mistakes that can produce very puzzling results.

When calling other testbenches, it is important to not forget the yield from. If it is omitted, the call would silently
do nothing.

When writing to a signal, it is important that nothing else should drive the signal concurrently. If that is not the case,
the write would silently do nothing.

16 Chapter 3. Simulating a Migen design

CHAPTER 4

Synthesizing a Migen design

[To be written]

17

Migen manual, Release 0.5.dev0

18 Chapter 4. Synthesizing a Migen design

CHAPTER 5

API reference

fhdl.structure module

class migen.fhdl.structure.Array
Bases: list

Addressable multiplexer

An array is created from an iterable of values and indexed using the usual Python simple indexing notation (no
negative indices or slices). It can be indexed by numeric constants, _Value s, or Signal s.

The result of indexing the array is a proxy for the entry at the given index that can be used on either RHS or
LHS of assignments.

An array can be indexed multiple times.

Multidimensional arrays are supported by packing inner arrays into outer arrays.

Parameters values (iterable of ints, _Values, Signals) – Entries of the array.
Each entry can be a numeric constant, a Signal or a Record.

Examples

>>> a = Array(range(10))
>>> b = Signal(max=10)
>>> c = Signal(max=10)
>>> b.eq(a[9 - c])

migen.fhdl.structure.C
alias of Constant

class migen.fhdl.structure.Case(test, cases)
Bases: migen.fhdl.structure._Statement

Case/Switch statement

19

Migen manual, Release 0.5.dev0

Parameters

• test (_Value, in) – Selector value used to decide which block to execute

• cases (dict) – Dictionary of cases. The keys are numeric constants to compare with test.
The values are statements to be executed the corresponding key matches test. The dictionary
may contain a string key “default” to mark a fall-through case that is executed if no other
key matches.

Examples

>>> a = Signal()
>>> b = Signal()
>>> Case(a, {
... 0: b.eq(1),
... 1: b.eq(0),
... "default": b.eq(0),
... })

makedefault(key=None)
Mark a key as the default case

Deletes/substitutes any previously existing default case.

Parameters key (int, Constant or None) – Key to use as default case if no other key
matches. By default, the largest key is the default key.

class migen.fhdl.structure.Cat(*args)
Bases: migen.fhdl.structure._Value

Concatenate values

Form a compound _Value from several smaller ones by concatenation. The first argument occupies the lower
bits of the result. The return value can be used on either side of an assignment, that is, the concatenated value
can be used as an argument on the RHS or as a target on the LHS. If it is used on the LHS, it must solely consist
of Signal s, slices of Signal s, and other concatenations meeting these properties. The bit length of the return
value is the sum of the bit lengths of the arguments:

len(Cat(args)) == sum(len(arg) for arg in args)

Parameters *args (_Values or iterables of _Values, inout) – _Value s to be
concatenated.

Returns Resulting _Value obtained by concatentation.

Return type Cat, inout

class migen.fhdl.structure.ClockDomain(name=None, reset_less=False)
Bases: object

Synchronous domain

Parameters

• name (str or None) – Domain name. If None (the default) the name is inferred from
the variable name this ClockDomain is assigned to (stripping any “cd_” prefix).

• reset_less (bool) – The domain does not use a reset signal. Registers within this
domain are still all initialized to their reset state once, e.g. through Verilog “initial” state-
ments.

20 Chapter 5. API reference

Migen manual, Release 0.5.dev0

clk
Signal, inout – The clock for this domain. Can be driven or used to drive other signals (preferably in
combinatorial context).

rst
Signal or None, inout – Reset signal for this domain. Can be driven or used to drive.

rename(new_name)
Rename the clock domain

Parameters new_name (str) – New name

class migen.fhdl.structure.ClockSignal(cd=’sys’)
Bases: migen.fhdl.structure._Value

Clock signal for a given clock domain

ClockSignal s for a given clock domain can be retrieved multiple times. They all ultimately refer to the same
signal.

Parameters cd (str) – Clock domain to obtain a clock signal for. Defaults to “sys”.

class migen.fhdl.structure.Constant(value, bits_sign=None)
Bases: migen.fhdl.structure._Value

A constant, HDL-literal integer _Value

Parameters

• value (int) –

• bits_sign (int or tuple or None) – Either an integer bits or a tuple (bits,
signed) specifying the number of bits in this Constant and whether it is signed (can rep-
resent negative values). bits_sign defaults to the minimum width and signedness of value.

class migen.fhdl.structure.DUID
Bases: object

Deterministic Unique IDentifier

class migen.fhdl.structure.If(cond, *t)
Bases: migen.fhdl.structure._Statement

Conditional execution of statements

Parameters

• cond (_Value(1), in) – Condition

• *t (Statements) – Statements to execute if cond is asserted.

Examples

>>> a = Signal()
>>> b = Signal()
>>> c = Signal()
>>> d = Signal()
>>> If(a,
... b.eq(1)
...).Elif(c,
... b.eq(0)
...).Else(

5.1. fhdl.structure module 21

Migen manual, Release 0.5.dev0

... b.eq(d)

...)

Elif(cond, *t)
Add an else if conditional block

Parameters

• cond (_Value(1), in) – Condition

• *t (Statements) – Statements to execute if previous conditions fail and cond is as-
serted.

Else(*f)
Add an else conditional block

Parameters *f (Statements) – Statements to execute if all previous conditions fail.

migen.fhdl.structure.Mux(sel, val1, val0)
Multiplex between two values

Parameters

• sel (_Value(1), in) – Selector.

• val1 (_Value(N), in) –

• val0 (_Value(N), in) – Input values.

Returns Output _Value. If sel is asserted, the Mux returns val1, else val0.

Return type _Value(N), out

class migen.fhdl.structure.Replicate(v, n)
Bases: migen.fhdl.structure._Value

Replicate a value

An input value is replicated (repeated) several times to be used on the RHS of assignments:

len(Replicate(s, n)) == len(s)*n

Parameters

• v (_Value, in) – Input value to be replicated.

• n (int) – Number of replications.

Returns Replicated value.

Return type Replicate, out

class migen.fhdl.structure.ResetSignal(cd=’sys’, allow_reset_less=False)
Bases: migen.fhdl.structure._Value

Reset signal for a given clock domain

ResetSignal s for a given clock domain can be retrieved multiple times. They all ultimately refer to the same
signal.

Parameters

• cd (str) – Clock domain to obtain a reset signal for. Defaults to “sys”.

22 Chapter 5. API reference

Migen manual, Release 0.5.dev0

• allow_reset_less (bool) – If the clock domain is resetless, return 0 instead of re-
porting an error.

class migen.fhdl.structure.Signal(bits_sign=None, name=None, variable=False, reset=0, re-
set_less=False, name_override=None, min=None, max=None,
related=None, attr=None)

Bases: migen.fhdl.structure._Value

A _Value that can change

The Signal object represents a value that is expected to change in the circuit. It does exactly what Verilog’s wire
and reg and VHDL’s signal do.

A Signal can be indexed to access a subset of its bits. Negative indices (signal[-1]) and the extended Python
slicing notation (signal[start:stop:step]) are supported. The indices 0 and -1 are the least and most significant
bits respectively.

Parameters

• bits_sign (int or tuple) – Either an integer bits or a tuple (bits, signed) specifying
the number of bits in this Signal and whether it is signed (can represent negative values).
signed defaults to False.

• name (str or None) – Name hint for this signal. If None (default) the name is inferred
from the variable name this Signal is assigned to. Name collisions are automatically resolved
by prepending names of objects that contain this Signal and by appending integer sequences.

• variable (bool) – Deprecated.

• reset (int) – Reset (synchronous) or default (combinatorial) value. When this Signal is
assigned to in synchronous context and the corresponding clock domain is reset, the Signal
assumes the given value. When this Signal is unassigned in combinatorial context (due to
conditional assignments not being taken), the Signal assumes its reset value. Defaults to 0.

• reset_less (bool) – If True, do not generate reset logic for this Signal in synchronous
statements. The reset value is only used as a combinatorial default or as the initial value.
Defaults to False.

• name_override (str or None) – Do not use the inferred name but the given one.

• min (int or None) –

• max (int or None) – If bits_sign is None, the signal bit width and signedness are de-
termined by the integer range given by min (inclusive, defaults to 0) and max (exclusive,
defaults to 2).

• related (Signal or None) –

• attr (set of synthesis attributes) –

classmethod like(other, **kwargs)
Create Signal based on another.

Parameters

• other (_Value) – Object to base this Signal on.

• migen.fhdl.bitcontainer.value_bits_sign for details. (See) –

migen.fhdl.structure.wrap(value)
Ensures that the passed object is a Migen value. Booleans and integers are automatically wrapped into
Constant.

5.1. fhdl.structure module 23

Migen manual, Release 0.5.dev0

fhdl.bitcontainer module

migen.fhdl.bitcontainer.value_bits_sign(v)
Bit length and signedness of a value.

Parameters v (Value) –

Returns Number of bits required to store v or available in v, followed by whether v has a sign bit
(included in the bit count).

Return type int, bool

Examples

>>> value_bits_sign(f.Signal(8))
8, False
>>> value_bits_sign(C(0xaa))
8, False

genlib.fifo module

genlib.coding module

Encoders and decoders between binary and one-hot representation

class migen.genlib.coding.Decoder(width)
Bases: migen.fhdl.module.Module

Decode binary to one-hot

If n is low, the i th bit in o is asserted, the others are not, else o == 0.

Parameters width (int) – Bit width of the output

i
Signal(max=width), in – Input binary

o
Signal(width), out – Decoded one-hot

n
Signal(1), in – Invalid, no output bits are to be asserted

class migen.genlib.coding.Encoder(width)
Bases: migen.fhdl.module.Module

Encode one-hot to binary

If n is low, the o th bit in i is asserted, else none or multiple bits are asserted.

Parameters width (int) – Bit width of the input

i
Signal(width), in – One-hot input

o
Signal(max=width), out – Encoded binary

24 Chapter 5. API reference

Migen manual, Release 0.5.dev0

n
Signal(1), out – Invalid, either none or multiple input bits are asserted

class migen.genlib.coding.PriorityEncoder(width)
Bases: migen.fhdl.module.Module

Priority encode requests to binary

If n is low, the o th bit in i is asserted and the bits below o are unasserted, else o == 0. The LSB has priority.

Parameters width (int) – Bit width of the input

i
Signal(width), in – Input requests

o
Signal(max=width), out – Encoded binary

n
Signal(1), out – Invalid, no input bits are asserted

genlib.sort module

class migen.genlib.sort.BitonicSort(n, m, ascending=True)
Bases: migen.fhdl.module.Module

Combinatorial sorting network

The Bitonic sort is implemented as a combinatorial sort using comparators and multiplexers. Its asymptotic
complexity (in terms of number of comparators/muxes) is O(n log(n)**2), like mergesort or shellsort.

http://www.dps.uibk.ac.at/~cosenza/teaching/gpu/sort-batcher.pdf

http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm

http://www.myhdl.org/doku.php/cookbook:bitonic

Parameters

• n (int) – Number of inputs and output signals.

• m (int) – Bit width of inputs and outputs. Or a tuple of (m, signed).

• ascending (bool) – Sort direction. True if input is to be sorted ascending, False for
descending. Defaults to ascending.

i
list of Signals, in – Input values, each m wide.

o
list of Signals, out – Output values, sorted, each m bits wide.

genlib.fsm module

class migen.genlib.fsm.FSM(reset_state=None)
Bases: migen.fhdl.module.Module

Finite state machine

Any Python objects can be used as states, e.g. strings.

5.5. genlib.sort module 25

http://www.dps.uibk.ac.at/~cosenza/teaching/gpu/sort-batcher.pdf
http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://www.myhdl.org/doku.php/cookbook:bitonic

Migen manual, Release 0.5.dev0

Parameters reset_state – Reset state. Defaults to the first added state.

Examples

>>> self.active = Signal()
>>> self.bitno = Signal(3)
>>>
>>> fsm = FSM(reset_state="START")
>>> self.submodules += fsm
>>>
>>> fsm.act("START",
... self.active.eq(1),
... If(strobe,
... NextState("DATA")
...)
...)
>>> fsm.act("DATA",
... self.active.eq(1),
... If(strobe,
... NextValue(self.bitno, self.bitno + 1)
... If(self.bitno == 7,
... NextState("END")
...)
...)
...)
>>> fsm.act("END",
... self.active.eq(0),
... NextState("STOP")
...)

act(state, *statements)
Schedules statements to be executed in state. Statements may include:

•combinatorial statements of form a.eq(b), equivalent to self.comb += a.eq(b) when the FSM is in the
given state;

•synchronous statements of form NextValue(a, b), equivalent to self.sync += a.eq(b) when the FSM is
in the given state;

•a statement of form NextState(new_state), selecting the next state;

•If, Case, etc.

ongoing(state)
Returns a signal that has the value 1 when the FSM is in the given state, and 0 otherwise.

26 Chapter 5. API reference

Bibliography

[mm] http://m-labs.hk

[mthesis] http://m-labs.hk/thesis/thesis.pdf

[mxcell] http://www.xilinx.com/publications/archives/xcell/Xcell77.pdf p30-35

[myhdl] http://www.myhdl.org

[countin] http://www.jandecaluwe.com/hdldesign/counting.html

27

http://m-labs.hk
http://m-labs.hk/thesis/thesis.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell77.pdf
http://www.myhdl.org
http://www.jandecaluwe.com/hdldesign/counting.html

Migen manual, Release 0.5.dev0

28 Bibliography

Index

A
act() (migen.genlib.fsm.FSM method), 26
Array (class in migen.fhdl.structure), 19

B
BitonicSort (class in migen.genlib.sort), 25

C
C (in module migen.fhdl.structure), 19
Case (class in migen.fhdl.structure), 19
Cat (class in migen.fhdl.structure), 20
clk (migen.fhdl.structure.ClockDomain attribute), 21
ClockDomain (class in migen.fhdl.structure), 20
ClockSignal (class in migen.fhdl.structure), 21
Constant (class in migen.fhdl.structure), 21

D
Decoder (class in migen.genlib.coding), 24
DUID (class in migen.fhdl.structure), 21

E
Elif() (migen.fhdl.structure.If method), 22
Else() (migen.fhdl.structure.If method), 22
Encoder (class in migen.genlib.coding), 24

F
FSM (class in migen.genlib.fsm), 25

I
i (migen.genlib.coding.Decoder attribute), 24
i (migen.genlib.coding.Encoder attribute), 24
i (migen.genlib.coding.PriorityEncoder attribute), 25
i (migen.genlib.sort.BitonicSort attribute), 25
If (class in migen.fhdl.structure), 21

L
like() (migen.fhdl.structure.Signal class method), 23

M
makedefault() (migen.fhdl.structure.Case method), 20
migen.fhdl.bitcontainer (module), 24
migen.fhdl.structure (module), 19
migen.genlib.coding (module), 24
migen.genlib.fsm (module), 25
migen.genlib.sort (module), 25
Mux() (in module migen.fhdl.structure), 22

N
n (migen.genlib.coding.Decoder attribute), 24
n (migen.genlib.coding.Encoder attribute), 24
n (migen.genlib.coding.PriorityEncoder attribute), 25

O
o (migen.genlib.coding.Decoder attribute), 24
o (migen.genlib.coding.Encoder attribute), 24
o (migen.genlib.coding.PriorityEncoder attribute), 25
o (migen.genlib.sort.BitonicSort attribute), 25
ongoing() (migen.genlib.fsm.FSM method), 26

P
PriorityEncoder (class in migen.genlib.coding), 25

R
rename() (migen.fhdl.structure.ClockDomain method),

21
Replicate (class in migen.fhdl.structure), 22
ResetSignal (class in migen.fhdl.structure), 22
rst (migen.fhdl.structure.ClockDomain attribute), 21

S
Signal (class in migen.fhdl.structure), 23

V
value_bits_sign() (in module migen.fhdl.bitcontainer), 24

W
wrap() (in module migen.fhdl.structure), 23

29

	Introduction
	Background
	Installing Migen
	Alternative install methods

	Feedback

	The FHDL domain-specific language
	Expressions
	Constants
	Signal
	Operators
	Slices
	Concatenations
	Replications

	Statements
	Assignment
	If
	Case
	Arrays

	Specials
	Tri-state I/O
	Instances
	Memories

	Modules
	Combinatorial statements
	Synchronous statements
	Submodules and specials
	Clock domains
	Summary of special attributes
	Clock domain management
	Finalization mechanism

	Conversion for synthesis

	Simulating a Migen design
	Examples
	Pitfalls

	Synthesizing a Migen design
	API reference
	fhdl.structure module
	fhdl.bitcontainer module
	genlib.fifo module
	genlib.coding module
	genlib.sort module
	genlib.fsm module

	Bibliography

